

SUGGESTED SOLUTIONS

KE2 – Management Accounting Information

March 2019

All Rights Reserved

SECTION 1

Answer 01

1.1

Learning outcome/s: 1.1.2
Explain the nature, scope and purpose of cost classifications (direct/indirect, fixed/variable/semi-
variable, production/period, controllable/non-controllable, relevant/non-relevant costs).
Study text reference: Pages 98 and 99
Correct answer: B

1.2

Learning outcome/s: 1.3.1 Explain types of remuneration (time-based, piece-based and incentive schemes) and accounting for cost of labour (including flexible working and labour turnover). Study text reference: Page 175

Correct answer: B

1.3

Learning outcome/s: 1.4.1 Explain characteristics of job, batch, contract, process and service costing. Study text reference: Pages 218 – 221 Correct answer: C

1.4

Learning outcome/s: 3.1.2

Prepare an overhead analysis sheet (with reciprocal servicing, only a discussion is expected) and its allocation to end products or services (including under or over absorption) under absorption costing.

Study text reference: Page 364

Correct answer: C

1.5

Learning outcome/s: 3.2.2	
Explain the steps involved in ABC.	
Study text reference: Page 389	
Correct answer: A	

Learning outcome/s: 4.1.1

Calculate simple and compound interest, effective rate of interest, the yield amount when the rate of interest changes with time, regular investment interest, and amortisation schedule. Study text reference: Page 407

Correct answer: B

1.7

Learning outcome/s: 5.1.1		
Define standard costing (should compare standards vs. budgets) and t	ypes of s	tandards.
Study text reference: Page 476		
Correct answer: D		

1.8

 Learning outcome/s: 6.1.1

 Identify linear and quadratic functions related to revenue, costs and profit in the algebraic, and graphical forms.

 Study text reference: Page 552

 Correct answer: C

1.9

Learning outcome/s: 6.2.1 Demonstrate the use of differential calculus in maximisation and minimisation decisions (using profit function or marginal functions with necessary and sufficient conditions). Study text reference: Page 565

Correct answer: C

1.10

Learning outcome/s: 7.1.2

Discuss different approaches possible in budgetary planning (including top-down, bottom-up traditional, rolling and zero-based budgeting).

Study text reference: Pages 606, 607, 622 and 626

Correct answer: B

(2 x 10 = Total: 20 marks)

Question 02

2.1

Learning outcome/s: 1.1.3

Calculate fixed and variable elements from total cost using "high-low" and "linear regression" methods.

Study text reference: Pages 111 and 113

Cost in January without step-up cost (Rs.)	= 524,000 - 32,000	= 492,000
Change in hours	= 8,300 - 6,500	= 1,800
Change in costs (Rs.)	= 492,000 - 420,000	= 72,000
Variable cost per hour (Rs.)	= 72,000/1,800	= 40
Fixed cost per hour (Rs.)	= 492,000 - (8,300 * 40)	= 160,000
Total cost for March (Rs.)	= 8,700 * 40 + 160,000 + 32,00	0 = 540,000

2.2

Learning outcome/s: 1.3.1 Explain types of remuneration (time-based, piece-based and incentive schemes) and accounting for cost of labour (including flexible working and labour turnover). Study text reference: Pages 176, 185 – 188

Daily rate	Rs. 2,100
Effective hours (8 – 1)	7 hours
Labour rate per hour (2,100/7)	Rs. 300
Labour charges (Job A) = 2 * 300	Rs. 600
Labour charges (Job B) = 3 * 300	Rs. 900

2.3

Learning outcome/s: 1.4.2

Demonstrate job, batch, contract (contract account preparation and recognising profit), process (losses, gains, scrap value, disposal cost, closing WIP and opening WIP based on the AVCO method) and service costing under appropriate business situations.

Study text reference: Pages 242 - 249

Output and losses		
Expected output = (2,500) * 90% = 2,250 units		
Abnormal loss = 2,250 – 2,100 = 150 units		
<u>Cost per unit</u>		
Scrap value of normal loss = 2,500 * 10% * 10 = Rs. 2,500		
= (90,000 – 2,500 + 58,750)/2,250 = Rs. 65		
Amount transferred to the statement of profit or loss		
Output value = 65 * 150 = 9,750		
Less: Scrap sale = 150 * 10 = <u>(1,500)</u>		
Total loss transferred to P&L = $\underline{\text{Rs}} \cdot \underline{8,250}$		

2.4

Learning outcome/s: 2.4.2

Calculate simple and conditional probabilities using multiplicative and additive rules, expectation and variance of discrete probability distribution (special discrete probability distribution such as Binomial and Poisson distributions are not expected), and probability estimates using normal distribution.

Study text reference: Pages 310, 315 – 318

(i)	More than Rs. 2,200	
	z-value = $(2,200 - 1,800)/380$ Proportion from the table Proportion higher than 2,200 is = $0.5 - 0.3531$	= 1.053 = 0.3531 = 0.1469 or 14.69%
(ii)	Spend between Rs. 1,200 and Rs. 2,000	
	z-value 1,200 = (1,200 – 1,800)/380 Proportion from the table	= 1.58 = 0.4429
	z-value 2,000 = (2,000 – 1,800)/380	= 0.53
	Proportion from the table	= 0.2019
	Total proportion = 0.4429 + 0.2019	= 0.6448 or 64.48%

2.5

Learning outcome/s: 2.6.1 Interpret simple and aggregate indices. Study text reference: Pages 48 and 49

Weighted average of price relative index = $\frac{\sum W \times P_1 / P_0}{\sum W} \times 100$

= (29.55/25) * 100

= 118.20

Ingredient	Relative price (p ₁ /p ₀)	Weight (W)	Index
Flour	126/90 = 1.40	12	1.40 * 12 = 16.80
Eggs	387/430 = 0.90	6	0.90 * 6 = 5.40
Butter	735/700 = 1.05	7	1.05 * 7 = 7.35
		$\Sigma W = 25$	$\Sigma W^* p_1 / p_0 = 29.55$

Learning outcome/s: 3.1.3

Prepare profit statements under both absorption and marginal costing, and the profit reconciliation statement.

Study text reference: Pages 384 – 385

Overhead absorption rate per unit (Rs.)	450
Closing stock (28,000 – 24,000)	4,000 units
Overheads in closing stock (Rs.)	1,800,000
Profit per absorption costing (Rs.)	7,200,000
Profit per marginal costing (Rs.)	5,400,000

2.7

Learning outcome/s: 3.2.2 Explain the steps involved in ABC. Study text reference: Page 389

Computation of the total number of production runs

Product A = 18,000/500	36
Product B = 25,000/2,500	10
Product C = 20,000/2,000	10
Total no. of production runs	56
Machine set-up costs (Rs.)	5,600,000
Set-up cost per production run (Rs.)	100,000
Set-up cost per unit of Product B	
(100,000 * 10)/25,000	Rs. 40

2.8

Learning outcome/s: 6.1.1

Identify linear and quadratic functions related to revenue, costs and profit in the algebraic, and graphical forms.

Study text reference: Page 552

Assume the original number of members to be "Q" and the membership fee to be "P"	
PQ = 570,000	
P (Q-4) + 8,000 (Q-4) = 570,000	OR
(Q-4)(P+8,000) = 570,000	OR
(570,000 + 8,000) (Q - 4) = 570,000	OR
Q	
570,000 - P = 8,000	(1)
(Q - 4)	
570,000 - P = 0	(2)
4	

2.9

Learning outcome/s: 6.2.1

Demonstrate the use of differential calculus in maximisation and minimisation decisions (using profit function or marginal functions with necessary and sufficient conditions).

Study text reference: Page 568

Marginal cost = Rs. 60
Market A selling price = Rs. 180
Market A contribution = Rs. 180 – Rs. 60 = Rs. 120
Total contribution of Market A = Rs. 120 * 8,000 = Rs. 960,000
Market B
$TR = 250Q - 0.005Q^2$
MR = 250 - 0.01Q
Profit is maximised when MR = MC (i.e. 250 – 0.01Q = 60)
Q = 19,000
P = 155
Only 10,000 could be produced. At that level the price is,
P = 250 - 0.005 * 10,000 = 200
Therefore the contribution from Market B would be \rightarrow (200 – 60) * 10,000 = Rs. 1,400,000
Therefore Market B should be targeted at the price of Rs. 200 each

2.10

Learning outcome/s: 7.3.1

Prepare functional and cash budgets (only understanding of the master budget is expected). Study text reference: Page 591

	Amount/Quantity
Production requirement	800
To meet sales demand	<u>200</u>
Closing inventory	1,000
Less: Opening inventory	<u>(100)</u>
Budgeted production volume	<u>900 bags</u>
<u>Usage requirement (in meters)</u>	450
To fulfil the budgeted production (900 * 0.5 meters)	50
To provide for inventory loss (450/0.9) * 10%	<u>75</u>
For closing inventory (135 * 0.5)/0.9	575 meters
Total cost of purchases (575 * 450)	<u>Rs. 258,750</u>

(Total: 30 marks)

SECTION 2

Answer 03

Learning outcome/s: 1.2.2

Explain material control systems and calculate EOQ, reorder levels, maximum and minimum levels, valuation of stocks and the issues using FIFO, LIFO and AVCO, and calculate profit under each stock valuation method.

Study text reference: Pages 137, 140 and 161

(a)

EOQ = $\sqrt{(2 * \text{demand } * \text{ ordering cost})/\text{holding cost})}$		
$EOQ = \sqrt{(2 * 120,000 * 20,000)/(400 * 15\% + 400 * 2\%)}$		
EOQ = 8,402 valves		
Per the present ordering system	Rs.	
Ordering cost = 120,000/5,000 * 20,000 =	480,000.00	
Holding cost = (5,000/2) * 68	170,000.00	
Total cost of ordering and holding	650,000.00	
At EOQ level	Rs.	
Ordering cost = 120,000/8,402 * 20,000 =	285,646.27	
Holding cost = (8,402/2) * 68	285,668.00	
Total cost of ordering and holding	571,314.27	

Cost saving = Rs. 78,686

Therefore at EOQ level the cost of inventory is Rs. 78,686 less than the present ordering system. (b)

Re-order level = Maximum usage * Maximum lead time Re-order level = 800 valves per day * 45 days Re-order level = 36,000 valves

(c)

Description	Price (Rs.)	Quantity (units)	Balance (units)	Balance value (Rs.)	AVCO value per unit (Rs.)
Opening	50	40,000	40,000	2,000,000	50.00
Issues		20,000	20,000	1,000,000	50.00
Receipts	52.10	50,000	70,000	3,605,000	51.50
Issues		20,000	50,000	2,575,000	51.50
Receipts	60.25	20,000	70,000	3,780,000	54.00
Issues		25,000	45,000	2,430,000	54.00

The value of closing inventory is 45,000 units for Rs. 2,430,000.

(Total: 10 marks)

Answer 04

Learning outcome/s: 4.1.1 Calculate simple and compound interest, effective rate of interest, the yield amount when the rate of interest changes with time, regular investment interest, and amortisation schedule. Study text reference: Pages 414, 454 and 455 Consider a loan of Rs. 10,000 at 27.85% (a) Monthly instalment = (10,000 * (1 + 27.85%))/12 = Rs. 1,065.42 Annuity of Rs. 1,065.42 for 12 periods where PV is 10,000 Annuity factor = 10,000/1,065.42 = 9.3860 From the tables, the monthly rate is approximately 4% $AER = 1.04^{12} - 1 = 60\%$ If the effective monthly rate is r, then: (b) $(1 + r)^{12} = 142.5\%$ r = 3.00% 12 period annuity factor at 3% = 9.954 The new instalment for a loan of Rs. 10,000 = 10,000/9.954 = 1,004.62 10,000 * (1 + R)/12 = 1,004.62R = 20.55%

(Total: 10 marks)

Answer 05

Learning outcome/s: 5.2.1 and 7.4.1

5.2.1 Calculate and interpret basic variances on direct material cost, direct labour cost, variable production overheads, fixed production overheads, and sales.

7.4.1 Prepare budgetary control statement (fixed/flexed/actual/variance)

Study text reference: Pages 490 – 520, 616

(a)

	Original	Flexed
Output (units)	10,000	12,000
		Rs.
Material A		5,280,000
Material B		1,200,000
Labour		1,200,000
Fixed overheads		2,000,000
Total		9,680,000

(b)

(i) Material price variance = (Standard price – Actual price) * Actual quantity purchased/utilised

Material A = 5 * (4.5 * 12,000) = Rs. 270,000 Favourable Material B = -5 * (2 * 12,000) = - Rs. 120,000 Adverse

(ii) Material usage variance = (Standard usage – Actual usage) * Standard rate

Material A = (4 * 12,000 – 4.5 * 12,000) * 110 = - Rs. 660,000 Adverse Material B = (2 * 12,000 – 2 * 12,000) * 50 = Nil

- (iii) Labour rate variance = (Standard rate Actual rate) * Actual hours = -10 * (0.6 * 12,000) = - Rs. 72,000 Adverse
- (iv) Labour efficiency variance = (Standard hours Actual hours) * Standard rate
 = (0.5 * 12,000 0.6 * 12,000) * 200 = Rs. 240,000 Adverse
- (v) Fixed overhead expenditure variance = Budgeted expenditure Actual expenditure = (2,000,000 – 2,300,000) = - Rs. 300,000 Adverse
- (c) Increase in wastage due to careless handling.
 - Use of substandard materials, which will increase the wastage.
 - Change in the method of production.
 - Defects in machinery.
 - Errors in standards, and out-of-date standards.

(Total: 10 marks)

Answer 06

Learning outcome/s: 7.2

Forecasting for budgeting

Study text reference: Pages 643, 650 and 655

(a)

	1	
(i)	Sales	s function (using the high-low method)
	Higho Higho	est no. of events – lowest no. of events = $980 - 480 = 500$ est sales in bunches – lowest sales in bunches = $26,000 - 14,000 = 12,000$
	Varia	ble number of bunches per event = 12,000/500 = 24 bunches
	Fixed	l demand = 26,000 – (980 * 24) = 2,480 bunches
	Sales	function: No. of bunches (Y), no. of events (e)
	Y = 2	,480 + 24e
(ii)	Cost	function (using the least squares method)
	b	$= \frac{n \sum XY - \sum X \sum Y}{n \sum X^2 - (\sum X)^2}$
		$= \frac{(5*197,600) - (81*10,750)}{(5*1,521) - (81*81)}$
		= 117,250/1,044
		= 112.31
	a	$= \frac{\sum Y}{n} - b \frac{\sum X}{n}$
		$= \frac{10,750}{5} - \frac{112.31 * \frac{81}{5}}{5}$
		= 2,150 - 1,819.42
		= 330.578
	Y = 3	30.58 + 112.31X

	Amount (Rs.)
Profit when the no. of events to be served is 900Sales quantity = 2,480 + 900 * 24 = 24,080 bunchesRevenue= 24,080 * 600	14,448,000
<u>Cost</u> = 330.58 + 112.31(24,080) = 330.58 + 2,704,425	<u>(2,704,755)</u>
Total profit	<u>11,743,245</u>

(Total: 10 marks)

SECTION 3

Answer 07

Lear	ning outcome/s: 2.1.1 and 2.2.1
2.1.1	Calculate mark-up and margin, and arrive at the amount in rupees for the given mark-up/margin
	percentages in scenarios (including VAT, income tax and discounts).
2.2.1	Calculate variations under addition, subtraction, multiplication and division. Estimate maximum
	error in profit when price, quantity, variable cost per unit and fixed costs are subject to error.
Study	y text reference: Pages 18, 19 and 28

(a)

W1	Passenger	Cargo
Salaries and other administrative costs (Rs.)	720,000	1,080,000
= 4,800,000 * 3/8 = 1,800,000		
Fuel, utility and depreciation (Rs.)	600,000	1,800,000
= 4,800,000 * 4/8 = 2,400,000		
Airport fees and other charges (Rs.) = 600,000	180,000	420,000
Total cost (Rs.)	1,500,000	3,300,000

(i)	<u>Cost to carry 1kg of cargo</u> = Total cargo carrying cost / total cargo weight = 3,300,000/2,500kg = Rs. 1,320	
(ii)	<u>Mark-up ratio per passenger ticket</u> Cost per passenger in the passenger section = 1,500,000/10 Add: Cost of the cargo section = 1,320 * 10 Total cost	00 = Rs. 15,000 = <u>Rs. 13,200</u> = <u>Rs. 28,200</u>
	Total selling price excluding VAT = (43,700/1.15) Mark-up amount = Rs. 38,000 – Rs. 28,200 Mark-up ratio = 9,800/28,200	= Rs. 38,000 = Rs. 9,800 = 34.75%

(b) Gross profit margin per trip when there is 100% passenger occupancy in the peak season

	(Rs.)
Ticket manager 20,000 * 100	2 000 000
	3,800,000
Normal cargo revenue = Cargo selling price * cargo space	2,376,000
$= \{2,500 - (100 * 10)\} * 90\% * \{1,320/(100\% - 25\%)\}$	
= 1,760 * 1,350kg	
Postal space sales = Cargo selling price * Cargo space	247,500
income	
$= \{2,500 - (100 * 10)\} * 10\% * \{1,320 * (100\% + 25\%)\}$	
= 1,650 * 150kg	
Sale of passenger extra space = Cargo selling price * Extra space	435,072
$= 1,760 * (100\% + 20\%) * \{1,000 * (1 - 0.794)\}$	
= 2,112 * 206kg	
Total revenue	6,858,572
Total operating cost	<u>(4,800,000)</u>
Expected gross profit	<u>2,058,572</u>
Gross profit margin per trip = $2,058,572/6,858,572$	30.01%

(c)

	Rs.
Net decrease in ticket sales = 3,800,000 - {100 * 38,000 * (100% - 15%)}	(570,000)
Increase in extra cargo sales = $\{(100 * 10) * 0.7940 - 300\} * (1,760 * 120\%)$	1,043,328
= 494kg * 2,112	
Total increase in gross profit	473,328
Change in profit per air trip (%) = 473,328/2,058,572	<u>22.99%</u>

Alternative answer

Alternative answer	Rs.
Revenue from air tickets (32,300 * 100)	= 3,230,000
Postal cargo (150kg * 1,650)	= 247,500
Commercial cargo (1,760 * 1,350)kg	= 2,376,000
Sale of passenger extra space (2,112 x 700kg)	= <u>1,478,400</u>
Total revenue in off-peak season	= 7,331,900
Total operating cost	= <u>(4,800,000)</u>
Gross profit	= <u>2,531,900</u>
Increase in gross profit (2,531,900 – 2,058,572)	= 473,328
Chang in profit per air trip (473,328/2,058,572 * 100)	= 22.99%

(d)

(i)	Revenue = No. of tickets * price per ticket		
		Rs.	
	Maximum revenue = (300 + 50) * (52,000 + 500) =	18,375,000	
	Minimum revenue = (300 – 50) * (52,000 – 500) =	12,875,000	
	Expected revenue per day = 300 * 52,000 =	15,600,000	
	Maximum absolute error = 15,600,000 – 18,375,000 =	2,775,000	
(ii)	Maximum cost of sales = $(3,980,000 + 2\%) + (2,750,000 + 6\%) + (1,875,000 + 5\%)$		
	= 8,943,350		
	Minimum cost of sales = (3,980,000 – 2%) + (2,750,000 – 6%) + (1,875,000 – 5%)		
	= 8,266,650		
	Expected cost of sales = $(3,980,000 + 2,750,000 + 1,875,000) = 8,605,000$		
	Maximum absolute error $= 9.042.250 + 9.605.000 = Pc.229.250$		
	Maximum absolute error = 0,743,330 = 0,003,000 = KS. 550,550		

(e) Maximum absolute profit for a week of 7 days

	Rs.
Maximum absolute revenue	18,375,000
Minimum absolute cost	<u>(8,266,650)</u>
Maximum absolute profit per day	<u>10,108,350</u>
Maximum absolute profit for 7 days = 10,108,350 * 7	70,758,450

(Total: 20 marks)

THE INSTITUTE OF CHARTERED ACCOUNTANTS OF SRI LANKA

Notice of Disclaimer

The answers given are entirely by the Institute of Chartered Accountants of Sri Lanka (CA Sri Lanka) and you accept the answers on an "as is" basis.

They are not intended as "Model answers', but rather as suggested solutions.

The answers have two fundamental purposes, namely:

- 1. to provide a detailed example of a suggested solution to an examination question; and
- 2. to assist students with their research into the subject and to further their understanding and appreciation of the subject.

The Institute of Chartered Accountants of Sri Lanka (CA Sri Lanka) makes no warranties with respect to the suggested solutions and as such there should be no reason for you to bring any grievance against the Institute of Chartered Accountants of Sri Lanka (CA Sri Lanka). However, if you do bring any action, claim, suit, threat or demand against the Institute of Chartered Accountants of Sri Lanka (CA Sri Lanka), and you do not substantially prevail, you shall pay the Institute of Chartered Accountants of Sri Lanka's (CA Sri Lanka's) entire legal fees and costs attached to such action. In the same token, if the Institute of Chartered Accountants of Sri Lanka's described herein or under the laws of Sri Lanka, you will pay the Institute of Chartered Accountants of Sri Lanka (CA Sri Lanka) legal fees and costs.

© 2013 by the Institute of Chartered Accountants of Sri Lanka (CA Sri Lanka). All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission of the Institute of Chartered Accountants of Sri Lanka (CA Sri Lanka).

KE2– Suggested Solutions March 2019

Page 15 of 15