

SUGGESTED SOLUTIONS

KE2 – Management Accounting Information

September 2018

All Rights Reserved

SECTION 1

Answer 01

1.1

Relevant Learning Outcome/s: 1.1.2

Explain the nature, scope and purpose of cost classifications (direct/indirect, fixed/variable/semi-variable, production/period, controllable/non-controllable, relevant/non-relevant costs).

Study text reference: Page 98

Correct answer: C

1.2

Relevant Learning Outcome/s: 2.2.1

Calculate variations under addition, subtraction, multiplication and division. Estimate maximum error in profit when price, quantity, variable cost per unit and fixed costs are subject to error.

Study text reference: Page 28

Correct answer: C

1.3

Relevant Learning Outcome/s: 3.1.3 Prepare profit statements under both absorption and marginal costing, and the profit reconciliation statement. Study text reference: Pages 378 and 383

Correct answer: D

1.4

Relevant Learning Outcome/s: 4.1.1

Calculate simple and compound interest, effective rate of interest, the yield amount when the rate of interest changes with time, regular investment interest, and amortisation schedule.

Study text reference: Pages 420 – 422

Correct answer: B

1.5

Relevant Learning Outcome/s: 4.2.3Calculate payback, ARR, NPV and IRR under simple cash flow projects.Study text reference: Page 445Correct answer: B

1.6

Relevant Learning Outcome/s: 5.1.1 Define standard costing (should compare standards vs budgets) and types of standards. Study text reference: Page 481 Correct answer: C

1.7

Relevant Learning Outcome/s: 5.2.1

Calculate and interpret basic variances on direct material cost, direct labour cost, variable production overheads, fixed production overheads, and sales.

Study text reference: Page 499 Correct answer: C

1.8

Relevant Learning Outcome/s: 6.1.1

Identify linear and quadratics functions related to revenue, costs and profit in the algebraic, and graphical forms.

Study text reference: Page 549

Correct answer: B

1.9

Relevant Learning Outcome/s: 7.1.1 Discuss the purposes of budgeting

Study text reference: Page 589

Correct answer: B

1.10

Relevant Learning Outcome/s: 7.2.2 and 7.2.3

7.2.2 Demonstrate regressed relationship and its correlation of a simple regression scenario through scatter diagram method, and least square method.

7.2.3 Demonstrate regressed relationship and its correlation of a simple regression scenario through scatter diagram method, and least square method.

Study text reference: Page 650

Correct answer: A

(Total: 20 marks)

Answer 02

2.1

	ant Learning Outcome/s: 1.2.2		
	in material control systems and calculate EOQ, reorder levels, maximum and		
	cks and the issues using FIFO, LIFO and AVCO and calculate profit under eacter text reference: Page 143	ch stock valuation meth	100.
litudy	Working	Qty/ Amount	
(i)	EBQ is $\sqrt{\frac{2C_{o}D}{C_{H}(1-D/R)}}$		
	$= \underbrace{\frac{2*500*60,000}{40*(1-60,000/180,000)}}$	= 1, 500 packs	
(ii)	Total holding cost and set-up cost saving = EBQ/2*C _h *(1-D/R) + Rate per set-up * No of set-ups		
	<u>Present case</u> = {5,000/2 *40*(1 - 60,000/180,000)} + {60,000/5,000 *500} = 66,667 + 6,000	= Rs. 72,667	
	<u>At EBQ level</u> ={1,500/2 *40*(1 - 60,000/180,000)} + {60,000/1,500 *500} = 20,000 + 20,000	= Rs. 40,000	
	Expected saving = Rs. 72, 667 – Rs. 40,000	= Rs. 32,667	

2.2

Relevant Learning Outcome/s: 1.3.1 Explain types of remuneration (time based, piece based and incentive schemes) and accounting for cost of labour (including flexible working and labour turnover). Study text reference: Page 177 Working Amount (Rs.) Guaranteed minimum wage (Rs.) (i) Basic pay = 100*8 hours = 800 Overtime = 100*150%*2 hours = <u>300</u> **Rs. 1,100** Total amount 1.100 (ii) Conversion cost (old system) (Rs.) Total wage = 1,100 Overhead cost = <u>1,200</u> Total cost 2,300 Cost of conversion per unit = 2,300/50 **Rs. 46** (iii) Conversion cost (piece work system) (Rs.) Piecework rate (25*60) = 1,500 **Overhead cost** <u>= 1,200</u> Total cost = 2,700

= 2,700/60

Cost of conversion per unit

Rs. 45

Relevant Learning Outcome/s: 2.1.1

Calculate mark-up and margin, and arrive at the amount in rupees for given mark-up/margin percentages in scenarios (including VAT, income tax and discounts)

Study text reference: Pages 18 and 20

	Working	
(i)	Standard error of the mean	
	$SEM = \frac{\sigma}{\sqrt{n}}$	
	SEM = 30 / 225	
	= 2 minutes	
(ii)	True mean time at 95% confidence level	
	90 +/- (1.96*2)	
	(90 + 3.93) - (90 - 3.92)	
	93.93 - 86.08	

2.4

	ant Learning Outcome/s: 2.4.2					
Calcul	late simple and conditional probabilities using multiplicative and additive rules, expectation and					
variar	nce of discrete probability distribution (special discrete probability distribution such as Binomial					
and Po	oisson distributions are not expected), and probability estimates using normal distribution.					
Study	text reference: Pages 292 and 294					
	Working					
(i)	New profit margin					
	Cost per packet = $1,140/(1,000/40)$ = (45.60)					
	Selling price per packet = $69/115\%$ = 60.00					
	Profit per packet $=$ 14.40					
	Profit margin = $14.4/60$ = 24%					
	Original profit margin					
	Original supplier price per kg = $1,140/1.2$ = 950					
	Cost per pack $= 950/(1,000/50) = (47.50)$					
	Selling price per pack (ex. VAT) = $69/115\%$ = 60.00					
	Profit per packet $= 12.50$					
	Profit margin = 12.5/60 = 20.83%					
(ii)	Original profit % per 1kg of cost = 12.5*20 = 250 / 950 = 26.31%					
	New profit % per 1kg of cost $= 14.4*25 = 360/1,140 = 31.58\%$					
	% change in profit earned (positive) = 5.27%					

Relevant Learning Outcome/s: 2.5.1

Demonstrate a basic understanding of sampling (simple random sampling and large samples only), sampling distribution of sample mean and sample proportion, and the use of confidence intervals in business including their interpretation.

orking	
Orking	
aily expected demand = 2,000*0.3 + 2,500*0.5 + 3,000*0.2	2,450
xpected variable cost per pack = 70*0.5 + 75*0.4 + 80*0.1	Rs. 73
	Rs.
ales income = 2,450*120	294,000
ariable cost = 2,450 *73	<u>(178,850)</u>
ontribution	115,150
xed fee	<u>(7,500)</u>
xpected daily profit	<u>107,650</u>

2.6

Relevant Learning Outcome/s: 4.1.1

Calculate simple and compound interest, effective rate of interest, the yield amount when the rate of interest changes with time, regular investment interest, and amortisation schedule.

Study text reference: Page 407

Working Value of the FD in 10 years

 $= 25,000,000^{*}(1.08)^{3*}(1.10)^{5*}(1.12)^{2}$

= 25,000,000*(1.259712)*(1.61051)*(1.2544)

= Rs. 63,622,502

<u>Net benefit</u>

= Rs. 65,000,000 – Rs. 63,622,502

= Rs. 1,377,498 (net positive benefit)

~		-
2	_	7
_	-	

Relevant Learning Outcome/s: 4.2.3			
Calculate Payback, ARR, NPV and IRR under simple cash flow projects.			
Study text reference: Pages 445 – 449			
	Rs. million		
PV of cash inflows (Rs. 20 million) = 2.6900*20	53.8		
NPV	16.85		
PV of capital outlays	36.95		
DF (Year 0 + Year 1)	1.8475		
Capital expenditure per year	20		
Total capital expenditure	40		

Relevant Learning Outcome/s: 5.1.2

The applicability of standard costing to organisations (with special reference to the difficulties involved in implementing standard costing to service organisations and modern organisations)

Study text reference: Page 483

Critics of using the standard costing method

- (i) It has limited applicability to the modern business environment as it needs immediate availability of products, shortening of product life cycles and higher quality standards.
- (ii) It has traditionally been associated with labour intensive operations, but currently most industries are capital intensive.
- (iii) Standard costing relies on the existence of repetitive operations and relatively homogeneous outputs. However, in modern businesses outputs and operations are not so repetitive.
- (iv) Variance analysis concentrates only on a narrow range of costs and does not give sufficient attention to issues such as quality and customer satisfaction.
- (v) Standard costing systems were developed when the business environment was more stable and less prone to change, but the current business environment is more dynamic.
- (vi) The standard costing system assumes that performance to standards is acceptable, however today's business environment is more focused on continuous improvement.

2.9

Relevant Learning Outcome/s: 5.2.1

Calculate and interpret basic variances on direct material cost, direct labour cost, variable production overheads, fixed production overheads and sales.

Study text reference: Page 494

Labour rate variance = (Std rate – Act rate) * Act hours

220,000 = (500 – 480) * Actual hours

Actual hours = 11,000

Labour efficiency variance = (Std hours – Act hours) * Std rate

= (13,200 – 11,000) * 500 = **1,100,000** Favourable

2.10

Relevant Learning Outcome/s: 7.4.1 Prepare budgetary control statement (fixed/flexed/actual/variance)						
Study text reference: Page 616						
Item	Working	Actual results (Rs.)				
Sales revenue	= 160,000 - 18,000	142,000				
<u>Cost of sales</u>						
- Material cost	= 48,000 + 3,500	(51,500)				
- Labour cost	= 35,000 - 8,000	(27,000)				
- Variable production overhead	= 7,000 - 900	<u>(6,100)</u>				
		57,400				
Fixed cost	<u>= 15,000 + 2,500</u>	<u>(17,500)</u>				
Profit		<u> </u>				

(Total: 30 marks)

SECTION 2

Answer 03

Relevant Learning Outcome/s: 2.3.1 and 2.4.2

	Calculate and interpret mean, standard deviation and coefficient of variation. Calculate simple and conditional probabilities using multiplicative and additive rules, expectation					
	and variance of discrete probability distribution (special discrete probability distribution such as Binomial and Poisson distributions are not expected), and probability estimates using normal distribution.					
Study	/ text reference: F	Pages 3	36, 40 and 295			
(a)						
(i)	Sugarcane = (30			-		
	Expected reven Expected profit				illion = Rs. 7.75 million	
	Cotton = (30*30			-		
	Expected reven Expected profit				illion = Rs. 8.25 million	
(ii)	Sugarcane					
	Probability (p)	X	$(\mathbf{x} - \mathbf{x})$		$(x - \bar{x})^2$ $p(x - \bar{x})^2$	
	30%	3 8	(4.75)		22.5625 6.77 0.0625 0.03	
	45% 25%	o 13	0.25 5.25		0.0625 0.03 27.5625 <u>6.89</u>	
	2370	15	5.25		<u>50.1875</u> <u>13.69</u>	
	Standard deviat	tion =	$\sqrt{\sum p(x - \bar{x})^2} = \sqrt{\frac{1}{2}}$	⁷ 13.69 = F	Rs. 3.7 million	
	Cotton					
	Probability (p)	x	(x - x ⁻)	(x - x ⁻) ²	$p(x - x)^2$	
	30%	(1)	(9.25)	85.56	25.67	
	45%	14	5.75	33.06	14.88	
	25%	9	0.75	<u>0.56</u> 119.18	$\frac{0.14}{40.69}$	
	Standard deviat	tion =	$\sqrt{\sum p(x - x)^2} = \sqrt{\frac{1}{2}}$	40.69 = F	Rs. 6.38 million	
(b)	Coefficient of va	riatio	n (COV) = Std d	eviation/	/Expected value	
	Sugarcane = 3.7 Cotton = 6.3	/7.75 8/8.2			48% 77.3%	

When the COV is high, the risk is also high. Therefore it is less risky to cultivate sugarcane.

(Total: 10 marks)

Answer 04

Relevant Learning Outcome/s: 3.2.2	
Explain the steps involved in ABC	
Study text reference: Pages 389 – 394, 396	

(a)	Computation of factory overheads	Rs.
	Product A = 100*25,000 =	2,500,000
	Product B = 200*32,500 =	6,500,000
	Product C = 300*20,000 =	<u>6,000,000</u>
	Total overheads	<u>15,000,000</u>

Cost pool	Activity level	%	Cost (Rs.)	Cost per cost driver (Rs.)
No. of machinery set-ups	300	40%	6,000,000	20,000
No. of purchase orders	1,600	40%	6,000,000	3,750
No. of customers	500	20%	<u> </u>	6,000
			15,000,000	

	Product A	Product B	Product C
Material cost per unit (Rs.)	200	300	500
Labour cost per unit (Rs.)	50	100	150
Subtotal (Rs.)	250	400	650

Overhead absorption			
	Product A	Product B	Product C
No. of machinery set-ups			
Activity utilisation	20	80	200
Relevant cost (Rs.)	400,000	1,600,000	4,000,000
No. of purchase orders			
Activity utilisation	100	500	1,000
Relevant cost (Rs.)	375,000	1,875,000	3,750,000
<u>No. of customers</u>			
Activity utilisation	5	105	390
Relevant cost (Rs.)	30,000	630,000	2,340,000
Total overhead cost (Rs.)	805,000	4,105,000	10,090,000
Output	25,000	32,500	20,000
Overhead cost per unit (Rs.)	32	126	505
Full cost per unit (Rs.)	282	526	1,155
20% profit mark-up	56	105	231
Selling price (Rs.)	339	632	1,385

- (b)
- As ABC focuses on the nature of cost behaviour, it provides a meaningful product cost.
- ABC uses multiple cost drivers to allocate overhead costs to activities and then to products instead of using a meaningless direct labour hour recovery rate or machine hour recovery rate which assumes that overhead costs are related to volume of activity only. ABC recognises that many overhead costs arise due to the diversity and complexity of operations.
- The complexity of manufacturing has increased with wider product ranges, shorter product life cycles, more importance attached to quality, and more complex processes. ABC recognises this complexity with its multiple cost drivers.
- ABC facilitates a good understanding of what drives overhead costs.
- ABC takes into consideration all overhead costs thereby taking management accounting beyond its "traditional" factory floor boundaries.

(Total: 10 marks)

Answer 05

Relevant Learning Outcome/s: 6.2.1
Demonstrate the use of differential calculus in maximisation and minimisation decisions (using profit
function or marginal functions with necessary and sufficient conditions).
Study text reference: Page 568

	Working				
(a)	Revenue function				
	= Price * Quantity				
	= (850 - 0.006X) * X				
	$= 850X - 0.006X^2$				
(b)	Marginal revenue = First derivative of revenue function = 850 - 0.012X				
	Marginal cost = First derivative of total cost function				
	From TC = $2,000,000 + 50X + 0.01X^2 \rightarrow 50 + 0.02X$				
	Profit maximises when,				
	Marginal cost = Marginal revenue				
	MC = MR				
	850 - 0.012X = 50 + 0.02X				
	-0.012X - 0.02X = 50 - 850				
	-0.032 X = -800				
	X = -800 / -0.032				
	X = 25,000				
	Optimal production level is 25,000 dolls a month.				
	Working				
	Optimal selling price				
	P = 850 - 0.006X				
	P = 850 - 0.006 * 25,000				
	P = 850 - 150				
	P = 700				
	Maximum selling price of a doll is Rs. 700				
VED C	uggested Solutions				

Current selling price (P) = $850 - 0.006 * 12,000$ P = $850 - 72$ = Rs. 778 Current revenue = $778 * 12,000$ = Rs. 9,336,000 Current cost = $2,000,000 + 50*12,000 + 0.01(12,000)^2$ = $2,000,000 + 600,000 + 1,440,000$ = (Rs. 4,040,000) Current total profit= Rs. 5,296,000Total profit at the optimal production levelNew revenue = $25,000 * 700$ New cost = $2,000,000 + 50*25,000 + 0.01*(25,000)^2$ = $2,000,000 + 50*25,000 + 0.01*(25,000)^2$ = $2,000,000 + 1,250,000 + 6,250,000$ New total profit= Rs. 9,500,000New total profit= Rs. 9,500,000Ess. 9,500,000Ess. 8,000,000	(c)	Total profit at the current production level
= Rs. 778 Current revenue = 778 * 12,000 = Rs. 9,336,000 Current cost = 2,000,000 + 50*12,000 + 0.01(12,000) ² = 2,000,000 + 600,000 + 1,440,000 = (Rs. 4,040,000) Current total profit = Rs. 5,296,000 Total profit at the optimal production level New revenue = 25,000 * 700 = Rs. 17,500,000 New cost = 2,000,000 + 50*25,000 + 0.01*(25,000) ² = 2,000,000 + 1,250,000 + 6,250,000 = Rs. 9,500,000 New total profit = Rs. 8,000,000		Current selling price (P) = 850 – 0.006 * 12,000
Current revenue = $778 * 12,000$ = Rs. 9,336,000Current cost = $2,000,000 + 50*12,000 + 0.01(12,000)^2$ = $2,000,000 + 600,000 + 1,440,000$ = $2,000,000 + 600,000 + 1,440,000$ = $(Rs. 4,040,000)$ Current total profit= Rs. 5,296,000Total profit at the optimal production levelNew revenue = $25,000 * 700$ New revenue = $25,000 * 700$ = Rs. $17,500,000$ New cost= $2,000,000 + 50*25,000 + 0.01*(25,000)^2$ = $2,000,000 + 1,250,000 + 6,250,000$ = $Rs. 9,500,000$ New total profit= Rs. 8,000,000		P = 850 - 72
Current cost = 2,000,000 + 50*12,000 + 0.01(12,000)^2 = 2,000,000 + 600,000 + 1,440,000 = $(Rs. 4,040,000)$ Current total profitCurrent total profitTotal profit at the optimal production levelNew revenue = 25,000 * 700 New cost = 2,000,000 + 50*25,000 + 0.01*(25,000)^2 = 2,000,000 + 1,250,000 + 6,250,000Rs. 17,500,000New total profit= Rs. 9,500,000New total profit		
= 2,000,000 + 600,000 + 1,440,000 = (Rs. 4,040,000) Current total profit = Rs. 5,296,000 Total profit at the optimal production level New revenue = 25,000 * 700 = Rs. 17,500,000 New cost = 2,000,000 + 50*25,000 + 0.01*(25,000) ² = 2,000,000 + 1,250,000 + 6,250,000 = Rs. 9,500,000 New total profit = Rs. 8,000,000		Current revenue = 778 * 12,000 = Rs. 9,336,000
Current total profit = Rs. 5,296,000 Total profit at the optimal production level		
Total profit at the optimal production levelNew revenue = $25,000 * 700$ = Rs. $17,500,000$ New cost= $2,000,000 + 50*25,000 + 0.01*(25,000)^2$ = $2,000,000 + 1,250,000 + 6,250,000$ = Rs. $9,500,000$ New total profit= Rs. $8,000,000$		
New revenue = $25,000 * 700$ = Rs. $17,500,000$ New cost= $2,000,000 + 50*25,000 + 0.01*(25,000)^2$ = $2,000,000 + 1,250,000 + 6,250,000$ = <u>Rs. 9,500,000</u> New total profit= Rs. 8,000,000		
New cost= $2,000,000 + 50*25,000 + 0.01*(25,000)^2$ = $2,000,000 + 1,250,000 + 6,250,000$ = $\underline{\text{Rs.} 9,500,000}$ = $\underline{\text{Rs.} 8,000,000}$ New total profit= $Rs. 8,000,000$		Total profit at the optimal production level
New cost= $2,000,000 + 50*25,000 + 0.01*(25,000)^2$ = $2,000,000 + 1,250,000 + 6,250,000$ = $\underline{\text{Rs.} 9,500,000}$ = $\underline{\text{Rs.} 8,000,000}$ New total profit= $Rs. 8,000,000$		N DE 000 # 500
$= 2,000,000 + 1,250,000 + 6,250,000 = \frac{\text{Rs.} 9,500,000}{\text{ers.} 8,000,000}$		
New total profit= Rs. 8,000,000		
Expected total profit increase		
		Expected total profit increase
Norman Ch. Commentance Ch		Norman Gt. Commentance Gt.
= New profit – Current profit		
= Rs. 8,000,000 - Rs. 5,296,000		
= Rs. 2,704,000		= KS. 2,704,000
The profitability of the company is expected to increase by Rs 2704,000 with t		The profitability of the company is expected to increase by Rs. 2,704,000 with the
expansion of operations.		

(d)

- The optimal production level was assessed considering the extra revenue (marginal revenue) generated by each additional item sold by the company.
- When the production level exceeds the above level, the additional cost of making an extra doll should exceed the additional revenue generated from an extra sale.
- In such situations, if the company increases the production capacity over 25,000 units a month, the profit that is earned will be lower than that earned at the optimal level.
- Since the company exists to maximise profits, the optimal production level must be at the level where the marginal cost equals the marginal revenue of the company.

(Total: 10 marks)

Answer 06

Relevant Learning Outcome/s: 7.3.1 Prepare functional and cash budgets (only understanding of master budget is expected) Study text reference: Page 591, 596

(a)

(i)

Working	Qty/ Amount	Qty/ Amount
Production required		
Oct (60%) 14,400		
Nov (40%) 9,600		
Material purchases budget	Α	В
For sales = 14,400*2 = 28,800		
14,400*0.3 = 4,320		
	28,800	4,320
For loss = $(28,800/0.96)*0.04 = 1,200$		
(4,320/0.90)*0.1 = 480		
	1,200	480
Total for the month's production	30,000	4,800
+ Closing inventory		
[(9,600*2)/0.96]*0.25 = 5,000		
[(9,600*0.3)/0.9]*0.25 = 800		
	5,000	800
- Opening inventory		
(30,000*0.25) = 7,500		
$(4,800^* 0.25) = 1,200$		
	<u>(7,500)</u>	<u>(1,200)</u>
Total purchasing requirement	27,500	4,400
Cost per unit (Rs.)	50	100
Total purchase cost budget (Rs.)	1,375,000	440,000
Total cost	<u>Rs. 1,8</u> 2	<u>15.000</u>

(ii) Labour cost budget

Category	Total hours	Rate per hour (Rs.)	Total cost (Rs.)
Semi-skilled	1.5*14,400 = 21,600	1,200/8 = 150	21,600*150 = 3,240,000
Skilled	0.5*14,400 <u>= 7,200</u>	1,800/8 = 225	7,200*225 = 1,620,000
	<u>28,800</u>		4,860,000

Usefulness of cash budgets

- They enable management to make any forward-planning decisions that may be needed, such as advising their bank, estimating overdraft requirements, strengthening their credit control procedures to ensure that customers pay more quickly.
- It is one of the most important planning tools that an organisation can use. It shows that cash affects all the plans made within the budgetary process. Hence its preparation can lead to a modification of budgets if it shows that there are insufficient cash resources to finance the planned operations.
- It can give management an indication of potential problems that could arise and provides them the opportunity to take actions to avoid such problems.

(Total: 10 marks)

(b)

Relevant Learning Outcome/s: 1.4.2

Demonstrate job, batch, contract (contract account preparation and recognising profit), process (losses, gains, scrap value, disposal cost, closing WIP and opening WIP based on AVCO method) and service costing under appropriate business situations.

Study text reference: Pages 261 and 268

		1	
(a)		Units	Value (Rs.)
(i)	Opening materials	5,000	2,000,000
	Purchased during month	95,000	38,950,000
	Total	100,000	40,950,000
	Normal loss (5%)	(5,000)	
	Expected output	95,000	
	Actual output	93,000	
	Abnormal loss	2,000	
(ii)	Material cost of Process 1		40,950,000
	Conversion cost		10,000,000
	Total process cost		50,950,000
	Less: Scrap sales (5,000*500)		(2,500,000)
	Total cost of Process 1		48,450,000
	Expected output		95,000
	Actual output		93,000
	Cost of output transferred to Process 2 (Rs.)		47,430,000
(iii)	Abnormal loss		2,000 units
	Value of abnormal loss (Rs.)		1,020,000
	Scrap sales (2,000*500) (Rs.)		1,000,000
	Impact/net loss from abnormal loss (Rs.)		20,000

(b)	<u>Loss analysis (units)</u>		
	Opening stock	10,000	
	Output of Process 1	93,000	
	Closing stock	<u>(8,000)</u>	
		_95,000	
	Completed output	90,000	
	Normal loss	5,000	

	Opening	Cost (Rs.) Opening Current		
	WIP	month	Total	
Previous process cost	5,000,000	47,430,000	52,430,000	
Material added	600,000	5,966,000	6,566,000	
Conversion cost	1,600,000	15,132,000	16,732,000	
		Units		
	Completed	Cost per unit (Rs.)		
Previous process transfer	90,000	8,000	98,000	535
Material added	90,000	8,000	98,000	67
Conversion cost	90,000	4,000	94,000	178
Unit cost of finished goods	5			780
Selling price (40% profit margin)				1,300

(d)	Value of closing wor	rk-in-pr	ogress			
		Units	Completion	Unit value (Rs.)	Value (Rs.)	
	Previous process transfer	8,000	100%	535	4,280,000	
	Material added	8,000	100%	67	536,000	
	Conversion cost	8,000	50%	178	712,000	
Value of closing work-in-progress 5,528,						
					(Total: 20 marks)	

THE INSTITUTE OF CHARTERED ACCOUNTANTS OF SRI LANKA

Notice of Disclaimer

The answers given are entirely by the Institute of Chartered Accountants of Sri Lanka (CA Sri Lanka) and you accept the answers on an "as is" basis.

They are not intended as "Model answers', but rather as suggested solutions.

The answers have two fundamental purposes, namely:

- 1. to provide a detailed example of a suggested solution to an examination question; and
- 2. to assist students with their research into the subject and to further their understanding and appreciation of the subject.

The Institute of Chartered Accountants of Sri Lanka (CA Sri Lanka) makes no warranties with respect to the suggested solutions and as such there should be no reason for you to bring any grievance against the Institute of Chartered Accountants of Sri Lanka (CA Sri Lanka). However, if you do bring any action, claim, suit, threat or demand against the Institute of Chartered Accountants of Sri Lanka (CA Sri Lanka), and you do not substantially prevail, you shall pay the Institute of Chartered Accountants of Sri Lanka's (CA Sri Lanka's) entire legal fees and costs attached to such action. In the same token, if the Institute of Chartered Accountants of Sri Lanka (CA Sri Lanka) is forced to take legal action to enforce this right or any of its rights described herein or under the laws of Sri Lanka, you will pay the Institute of Chartered Accountants of Sri Lanka (CA Sri Lanka) legal fees and costs.

© 2013 by the Institute of Chartered Accountants of Sri Lanka (CA Sri Lanka). All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission of the Institute of Chartered Accountants of Sri Lanka (CA Sri Lanka).

KE2– Suggested Solutions September 2018

Page 16 of 16