

SUGGESTED SOLUTIONS

02104 – Business Mathematics and Statistics

Certificate in Accounting and Business I Examination March 2013

THE INSTITUTE OF CHARTERED ACCOUNTANTS OF SRI LANKA

PAPER 'A'

ANSWERS FOR MULTIPLE CHOICE QUESTIONS

		Y1	Y2	¥3	¥4	¥5		
(a)	Electricity cost (Rs.)	4,000,000.00	4,100,000.00	4,202,500.00	4,307,562.50	4,415,251.56		
(b)	Savings	8%	8%	8%	8%	8%		
		320,000.00	328,000.00	336,200.00	344,605.00	353,220.13		
(c)	DCF	0.87	0.756	0.658	0.572	0.497		
	PV (Rs.)	278,400.00	247,968.00	221,219.60	197,114.06	175,550.40		
						1,120,252.06		
	NPV of the investment = $1,120,252.06 - 1,000,000 =$ Rs. 120,252.06							
(d)	NPV of the energy saving is positive, hence the project is viable. Recommend to replace the 2^{nd} dryer							

(Total 12 marks)

(a)	Average income per room per day	=	$= (56,000 \ge 0.25) + (48,000 \ge 0.7)$				
		=	14,000 + 36,000				
		=	Rs. 50,000	(2 marks)			

(b) Assume that the number of rooms booked would be x

Revenue
$$\Rightarrow$$
 R = 50,000 x
Total Cost \Rightarrow TC = 20,000 x + 7,500,000 (2 marks)

(c)

(Rs. 'Mn)

X	0	100	200	300	400	500
Revenue	0	5.0	10.0	15.0	20.0	25.0
Variable cost	0	2.0	4.0	6.0	8.0	10.0
Fixed cost	7.5	7.5	7.5	7.5	7.5	7.5
Total cost	7.5	9.5	11.5	13.5	15.5	17.5

Break even occupancy rate = 250 rooms per day

(5 marks)

(d)	Duration of the power failure	=	24 hours	
	Additional FC		62,500 x 24	
	Total FC	=	9,000,000	
	Assume new B.E level is x			
	50,000x 30,000x x	= = =	20,000x + 9,000,000 9,000,000 300	
	B.E occupancy rate	=	300 rooms	(3 marks)
			Ċ	(0 111111)
				(Total 12 marks)
		$ \land $		

(a) The number of road accidents shown in 2000 is 800, but in 2010 is 500. The figure is not halved.

(6)

V	$10 < V \leq 30$	30 < V < 40	40 < V < 45	45 < V < 50	50 < V < 60	60 < V < 100
f	6	16	12	10	12	4
Cum. f	6	22	34	44	56	60
Std. f	3	16	24	20	12	1

(3 marks)

(ii)	Mode	el class	=	40 - 45	(1 marks)
(iii)	Uppe	r quartile of the distribution	=	$60 \ge 75 \% = 45$ 50 kmh^{-1} to 60 kmh^{-1}	
					(2 marks)
(iv)	(a)	P (less than 10 kmh^{-1})	=	0	(2 marks)
	(b)	P (more than 50 kmh ⁻¹)	7	$\frac{16}{60} = \frac{4}{15}$	
					(2 marks)
					(Total 12 marks)
er No. (<u>04</u>				

Answer No. 04

						1	Alternat	e Answei	•
	A = 45								
	x	f	fx	\mathbf{x}^2	fx ²	d=x-A	fd	d ²	fd ²
10 and less than 20 days	15	3	45	225	675	-30	-90	900	2700
20 and less than 30 days	25	8	200	625	5000	-20	-160	400	3200
30 and less than 40 days	35	19	665	1225	23275	-10	-190	100	1900
40 and less than 50 days	45	24	1080	2025	48600	0	0	0	0
50 and less than 60 days	55	37	2035	3025	111925	10	370	100	3700
60 and less than 70 days	65	18	1170	4225	76050	20	360	400	7200
70 and less than 80 days	75	7	525	5625	39375	30	210	900	6300
80 and less than 90 days	85	4	340	7225	28900	40	160	1500	6400
	400	120	6060	24200	333800	40	660	440	31400

(a) Method I
Mean =
$$\sum_{\Sigma f} \frac{1}{\Sigma f}$$

= $\frac{6060}{120}$
= 50.5
(b) S.D = $\sqrt{\sum_{\Sigma f} \frac{1}{\Sigma f}}$
= $\sqrt{\frac{333,800}{120} - 50.5^2}$
= 15.21
(c) Coefficient of variations
= $\frac{15.21}{Mean}$
= $\frac{15.21}{Mean}$

(c)	(i)	% components are "Too Small"	=	0.5 - 0.4868	
			=	1.32%	
		of components	=	132	
	(ii)	% components expected to be under	rgone		
		the mechanical process	=	13.61%	
			=	13.61 x 10,000	
		No. of components	=	1361	
		Additional cost	=	1361 x 48	
			=	Rs. 65,328	(4 marks) (Total 12 marks)

(a)	Туре Туре	e I error e II erro	cα orβ	=	Reje Acce	ct null ept null	hypothes l hypothe	is whe sis whe	n it is tr en it is f	ue alse		(3 marks)
(b)	Air A η_1	Alfa =	50					Air Ε η	Beta =	50		
	$\frac{-}{x_1}$	=	3.56					$\overline{\mathbf{x}}_2$	=	3.64		
	_ σ	=	0.08					σ	=	0.12		
	Рори	ilation	mean	=	μ_1		Popul	lation r	nean	=	μ_2	
	(i)	Null Alte	Hypothe rnative F	esis Iypoth	= esis =	H ₀ : H ₁ :	$\mu_1 = \mu_2 \ \mu_1 < \mu_2$;	μ1 - μ	2 < 0			(3 marks)
	(ii)	Stan	dard erro	or of m	nean	=	$\frac{{\sigma_1}^2}{n_1}$ +	$-\frac{\sigma_2^2}{n_2}$))			
						=	$\sqrt{\frac{0.08^2}{50}}_{0.020}$	+ <u>0.1</u> 50	$\frac{2^2}{2}$			(2 marks)
	(111)											
		(
		-3.	.92	33	=	_ x ₁ -	- - X ₂				_	
		Z_1	=	$\frac{x_1}{0.02}$	$\frac{-\frac{x_2}{x_2}}{5-3.64}$	$\sqrt{\frac{\sigma_1^2}{n_1}}$	$+ \frac{\sigma_2^2}{n_2}$					
		Z_1	=	-3.9 -3.9 Air pund	2 $2 < Z_1 = Beta$ ta ctual tha	= 2.33 kes m in Air l	at 0.01 le ore time Beta	vel of s than A	significa Air Alfa	ance a, i.e. A	ir Al	fa is more

(4 marks)

(Total 12 marks)

(a)

Wind Speed	Power generation of the wind turbine (kw)
0	0
4	132
8	276
12	332
16	488
20	821
24	1000
28	1000
32	1000
36	1000

(b) Upto 24 m/s - strong positive correlation

X	У	\mathbf{x}^2	\mathbf{Y}^2	XY
0	0	0	0	0
4	132	16	17424	528
8	275	64	75625	2200
12	332	144	110224	3984
16	488	256	238144	7808
20	821	400	674041	16420
24	1000	576	1000000	24000
84	3048	1456	2115458	54940

Correlation (r) =
$$n\Sigma XY - (\Sigma X) (\Sigma Y) / \text{Sqrt} [(n\Sigma X^2 - (\Sigma X)^2)] [(n\Sigma y2 - (\Sigma Y)^2)]$$

= $\frac{7 (54,940) - (84) (3048)}{\sqrt{7 (1456) - (84)^2}} [(7(2,115,458) - (3,048)^2)]}$
= $\frac{128,548}{\sqrt{3,136 \times 5,517,902}}$
= 0.977
 $\simeq 0.98$
===

Two variables have a strong positive correlation

(c) Coefficient of determination $(r^2) = 0.954$

i.e. 95.4% of the variation in power generation of the wind turbine can be accounted for by linear relationship with wind speed.

(7 marks) (Total 12 marks)

(a)	<u>2011</u> 2010	= 101.8%		=	1.018
	and	$\frac{2012}{2010} =$	103.3%	=	1.033
	<i>.</i> .	$\frac{2012}{2010} =$	$\frac{2012}{2011} \times \frac{2011}{2010}$	=	1.033 x 1.018
				=	1.051594
				=	105.2%
	<i>.</i>	Price index for	or 2012 based on 2010	=	105.2
(b)					

(4 marks)

Category	2012 Price Index (%)	Weight (W)	Price Index x (W)
Food	106.7	163	17392.1
Catering	113.4	50	5670
Alcoholic Drink	109.4	78	8533.2
Tobacco	106.6	36	3837.6
Housing	118.3	160	18928
Fuel and light	101.6	55	5588
Clothing and footwear	105.2	72	7574.4
		$\Sigma W = 614$	67523.3

Weighted Price Index	=	$\frac{67523.3}{614} = 109.97$	
	=	~ 110	(5 marks)
(c) Weekly expenditure 2012	=	$\approx 110\%$ if expenditure 2010	
	=	1.10 x Euro 1250	
	=	Euro 1375.00	
×			
			(3 marks)

(3 marks)

(Total 12 marks)

Notice of Disclaimer

The answers given are entirely by the Institute of Chartered Accountants of Sri Lanka (CA Sri Lanka) and you accept the answers on an "as is" basis.

They are not intended as "Model answers', but rather as suggested solutions.

The answers have two fundamental purposes, namely:

- 1. to provide a detailed example of a suggested solution to an examination question; and
- 2. to assist students with their research into the subject and to further their understanding and appreciation of the subject.

The Institute of Chartered Accountants of Sri Lanka (CA Sri Lanka) makes no warranties with respect to the suggested solutions and as such there should be no reason for you to bring any grievance against the Institute of Chartered Accountants of Sri Lanka (CA Sri Lanka). However, if you do bring any action, claim, suit, threat or demand against the Institute of Chartered Accountants of Sri Lanka (CA Sri Lanka), and you do not substantially prevail, you shall pay the Institute of Chartered Accountants of Sri Lanka's (CA Sri Lanka's) entire legal fees and costs attached to such action. In the same token, if the Institute of Chartered Accountants of Sri Lanka) is forced to take legal action to enforce this right or any of its rights described herein or under the laws of Sri Lanka, you will pay the Institute of Chartered Accountants of Sri Lanka, using the Institute of Chartered Accountants of Sri Lanka, using the Institute of Chartered Accountants of Sri Lanka, using the Institute of Chartered Accountants of Sri Lanka, using the Institute of Chartered Accountants of Sri Lanka, using the Institute of Chartered Accountants of Sri Lanka (CA Sri Lanka) is forced to take legal action to enforce this right or any of its rights described herein or under the laws of Sri Lanka, you will pay the Institute of Chartered Accountants of Sri Lanka (CA Sri Lanka) legal fees and costs.

© 2013 by the Institute of Chartered Accountants of Sri Lanka(CA Sri Lanka). All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission of the Institute of Chartered Accountants of Sri Lanka (CA Sri Lanka).