

SUGGESTED SOLUTIONS

02104 – Business Mathematics and Statistics

Certificate in Accounting and Business I Examination September 2012

THE INSTITUTE OF CHARTERED ACCOUNTANTS OF SRI LANKA

PAPER 'A'

ANSWERS FOR MULTIPLE CHOICE QUESTIONS

(a) V =
$$\frac{P}{i}$$
 $\begin{pmatrix} 1 & - & \frac{1}{(1+i)^n} \end{pmatrix}$

$$1,000,000 = \underline{P} \left(1 - \frac{1}{(1.01)^{180}}\right)$$

= Rs. 12,001.68

(4 marks)

(b)

Year	Estimated saving on	Estimated O & M	DCF	PV
	electricity cost	cost saving		
	(Rs.)	(Rs.)		
0				
1	480,000	200,000	0.909	618,120
2	640,000	200,000	0.826	693,840
3	680,000	200,000	0.751	660,880
4	600,000	200,000	0.683	546,400
5	720,000	200,000	0.621	571,320
				3,090,560

Since the PV of saving during the first five years is more than the PV of the proposed investment, the management should proceed with the investment.

(6 marks)

(c) The IRR is the rate of interest at which NPV of the project becomes zero.

(2 marks)

(a)	Assume the number of passengers on board is x then the total cost fun TC = a + bx	ction is given by,
	When $x = 300$, total other operational cost is Rs. 5.7 million. 5,700,000 = $a + 300b$	(1)
	When x = 180, total other operational cost is Rs. 3.9 million 3,900,000 = a + 180b	(2)
	Solving (1) & (2)	
	b = 15,000 a = 1,200,000	
	Total fixed cost = $1,200,000 + 1,800,000$	
	= Rs. 3,000,000	
	Total variable cost = Rs. 15,000 per passenger	(3 marks)
(b)	(i) Total cost function $Y = 3,000,000 + 15,000 x$	
	Total revenue function $Y = 30,000 x$	

x – number of passengers on board

(ii)

		Sales Revenue fy	Total cost fy
	Х	Y = 30,000x	Y = 15,000x + 3,000,000
	0	0	3,000,000
4	50	1,500,000	3,750,000
1	00	3,000,000	4,500,000
1	50	4,500,000	5,250,000
2	.00	6,000,000	6,000,000
2	50	7,500,000	6,750,000
3	00	9,000,000	7,500,000

Alternate and	<u>swer</u>	
30,000x 15,000x x	= =	3,000,000 + 15,000x 3,000,000 200

(4 marks)

Distance driven by cars x (km)	Number of vehicles	Cum. frequency
$0 < x \le 25,000$	1	1
$25,000 < x \le 50,000$	5	6
$50,000 < x \le 75,000$	6	12
$75,000 < x \le 100,000$	9	21
100,000 < x ≤ 125,000	14	35
$125,000 < x \le 150,000$	20	55
150,000 < x ≤ 175,000	15	70
$175,000 < x \le 200,000$	5	75

(i)

(ii) Reference to the cumulative frequency curve, over 158,000 km driven vehicles will be replaced.

(5 marks)

(a) Curve in symmetrical. It is bell shaped. Mean median & mode has the same values. Total area under the curve is one Two tails of the curve come closer and closer to x but will never touch x axis. (3 marks)
(b)
(i) 0.4641

0.5-0.4641 1.8 $\mu = 5.25$ $\sigma = 1.25$ using Z <u>x - µ</u> σ when x 3 Ζ <u>3 - 5.25</u> 1.25 -1.8 = Percentage of customer pay in less than 3 minutes Area to the left of Z = -1.8= 0.5 - 0.4641 = 0.0359 = (3 marks) = 3.59% (ii) 75% Х Ζ =<u>x - µ</u> σ

Value of Z when are = $0.25 \Rightarrow Z = 0.67$ Finding x when $Z = 0.67 \Rightarrow Z = \frac{x - \mu}{\sigma}$ $0.67 = \frac{x - 5.25}{1.25}$ x = 6.07 minutes

Since the standard cannot be maintained with existing number of counters, a new counter need to be added.

(3 marks)

(iii)

Addition of one billing counter is sufficient to maintain the service standard

(b)

(a) The power of test is the probability that a false hypothesis in correctly rejected.

Hypothesis in correctly rejected

Power of test =
$$1 - \beta = Pr$$
 (rejected H_o when false) (3 marks)
(i) The Null and Alternative hypothesis for the problem can be stated as two tail test H_o: $\mu = 2,500 \text{ mm}$ $\sigma = 256 \text{ mm}$ $n = 40$
H₁: $\mu \neq 2,500 \text{ mm}$ $\overline{x} = 2659 \text{ mm}$ (2 marks)
(ii) Standard error of mean = σ
 $= \frac{\sqrt{n}}{\sqrt{40}}$
 $= 40.48$ (3 marks)
(iii) $reject$ region
 -1.96 0 1.96

Note: Assuming that the sampling distribution of x is a normal distribution

$$Z = \frac{x}{\sqrt{n}} = \frac{2,659 - 2,500}{40.48} = 3.92$$

The value of z exceeds 1.96 and falls in the rejection region.

 \therefore Null hypothesis H_o should be rejected.

i.e. The average annual rainfall in Watawala area is not 2,500mm.

(4 marks)

(a) (i) In 1ml of liquid we expect to find 4 particles, so in 3ml of liquid we expect to find 12 particles.

Let Υ be the r.v. 'number of particles in 3ml of liquid.

So,
$$\Upsilon \sim Po(12)$$
 and $P(\Upsilon = y) = \frac{e^{-12} 12^y}{y!}$
 $y = 0, 1, 2, \dots$
Now we require $P(\Upsilon < 2) = P(\Upsilon = 0) + P(\Upsilon = 1)$
 $= (e^{-12} * 12^0) / 0! + (e^{-12} * 12^1) / 1!$
 $= 13e^{-12}$
 $= 7.99 \times 10^{-5}$

(2 marks)

(ii) In 1ml of liquid we expect 4 particles, so in ½ ml of liquid we 'expect' 2 particles. Let R be the r.v. 'the number of particles in ½ ml of liquid'.

We require

$$P(R > 2) = 1 - [P(R = 0) + P(R = 1) + P(R = 2)]$$

= 1 - [(e⁻²*2⁰)/0!+(e⁻²*2¹)/1!+(e⁻²*2²)/2!
= 1 - [e⁻²+2e⁻²+2e⁻²]
= 1 - 5e⁻²
= 0.323
==== (2 marks)

(b) (i) Average number of misprints per page = $\frac{750}{500}$ = 1.5 (1 marks)

(ii) Let x be the r.v. 'the number of misprints per page'.

Then, assuming that misprints occur at random, $x \sim Po(1.5)$ $P(x = 0) = e^{-1.5}$ = 0.2231 \therefore P (there will be no misprints on page 427) = 0.223 ====

$$P(x = 4) = \frac{e^{-1.5} * (1.5)^4}{4!}$$
$$= 0.0470$$

The average number of misprints per page = 1.5

$$P(x > 1.5) = P(x = 2) + P(x = 3) + \dots$$

$$= 1 - (P(x = 0) + P(x = 1))$$

$$= 1 - (e^{-1.5} + e^{-1.5} (1.5))$$

$$= 1 - 2.5 e^{-1.5}$$

$$= 0.4421$$

$$=====$$

(5 marks)

(iii) On one page all expect 1.5 misprints, so on two pages we expect 3 misprints. Let Y be the random variable.

'the number of misprints on two pages'.

$$\Upsilon \sim Po(3)$$
, So $P(\Upsilon = 0) = (e^{-3} \times 3^{\circ})/0!$
= 0.0497

(2 marks)

(a)

Day	Duration of continuous	Number of accident in	
	driving at the time of the	2011	
	accident occurred		
	(nearest 30 minutes)		
1	0.5 Min	49	
2	1.0 Hour	60	
3	1.5 Hours	152	
4	2.0 Hours	123	
5	2.5 Hours	175	
6	3.0 Hours	256	
7	3.5 Hours	313	
8	4.0 Hours	375	
9	4.5 Hours	515	
10	5.0 Hours	496	

(3 marks)

(2 marks)

(c) Correlation

$$r = \frac{n\Sigma xy - \Sigma x.\Sigma y}{\left\{ n\Sigma x^{2} - (\Sigma x)^{2} \right\} \left[n\Sigma y^{2} - (\Sigma y)^{2} \right]}$$
$$= \frac{10 x 9157 - 27.5 x 2514}{\sqrt{\left\{ 10 x 96.25 - (27.5)^{2} \right\} \left\{ 10 x 890230 - (2514)^{2} \right\}}}$$
$$= 0.97$$
$$==$$

Two variables have a strong positive correlation

(5 marks)

(d) Multi Correlation Analysis

(2 marks)

(a) (i) All item price index for 1980

 $= 339.7 \times 61.9\% + 239.9 \times 9.4\% + 563.9 \times 4.3\% + 109.8 \times 5.7\% + 293.8 \times 18.7\%$ = 318.27(3 marks)

(ii) Salary of the person to maintain the same living standard

$$= \frac{8,000}{203.2} \times 318.27$$

= <u>Rs. 12,530</u>

(b)

(3 marks)

Year	Quarter	Y	Т	Y – T
	Q1	99		7
2008	Q2	72		
	Q3	118	106.63	11.375
	Q4	136	107.50	28.5
	Q1	102	107.75	-5.75
2009	Q2	76	108.00	-32
	Q3	116	108.75	7.25
	Q4	140	109.75	30.25
	Q1	104	111.00	-7
2010	Q2	82	112.00	-30
	Q3	120	112.13	7.875
	Q4	144	112.25	31.75
	Q1	101	113.13	-12.125
2011	Q2	86	113.88	-27.875
	Q3	123		
	Q4	147		

YEAR	Q1	Q2	Q3	Q4	
2008	0	0	11.375	28.5	
2009	-5.75	-32	7.25	30.25	
2010	-7	-30	7.875	31.75	
2011	-12.125	-27.875			
Unadjusted Mean	-8.29167	-29.9583	8.833333	30.16667	$=\Sigma + 0.75$
Adjustment 0.75/4	-0.1875	-0.1875	-0.1875	-0.1875	
Adjusted Mean	-8.47917	-30.1458	8.645833	29.97917	
Seasonal fluctuation	-8.48	-30.15	8.65	29.98	

(6 marks) (Total 12 marks)

Notice of Disclaimer

The answers given are entirely by the Institute of Chartered Accountants of Sri Lanka (CA Sri Lanka) and you accept the answers on an "as is" basis.

They are not intended as "Model answers', but rather as suggested solutions.

The answers have two fundamental purposes, namely:

- 1. to provide a detailed example of a suggested solution to an examination question; and
- 2. to assist students with their research into the subject and to further their understanding and appreciation of the subject.

The Institute of Chartered Accountants of Sri Lanka (CA Sri Lanka) makes no warranties with respect to the suggested solutions and as such there should be no reason for you to bring any grievance against the Institute of Chartered Accountants of Sri Lanka (CA Sri Lanka). However, if you do bring any action, claim, suit, threat or demand against the Institute of Chartered Accountants of Sri Lanka (CA Sri Lanka), and you do not substantially prevail, you shall pay the Institute of Chartered Accountants of Sri Lanka's (CA Sri Lanka's) entire legal fees and costs attached to such action. In the same token, if the Institute of Chartered Accountants of Sri Lanka) is forced to take legal action to enforce this right or any of its rights described herein or under the laws of Sri Lanka, you will pay the Institute of Chartered Accountants of Sri Lanka, legal fees and costs.

© 2013 by the Institute of Chartered Accountants of Sri Lanka(CA Sri Lanka).

All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission of the Institute of Chartered Accountants of Sri Lanka (CA Sri Lanka).