

SUGGESTED SOLUTIONS

KB2– Business Management Accounting

June 2015

All Rights Reserved

SECTION 1

Answer 01

Relevant Learning Outcome/s: 1.1.1, 1.1.3

1.1.1 Assess the key features of the absorption costing method and ABC method.

1.1.3 Evaluate product profitability and customer profitability decision using information generated from absorption costing and activity based costing.

	Custo	omer	
	AH	LW	Company
Contribution (Rs. '000)	1,500	810	9,000
Packs sold ('000)	50	27	300
Sales visits to customers	24	12	200
Orders placed by customers	75	20	700
Normal deliveries to customers	45	15	240
Urgent deliveries to customers	5	-	30
Activity costs			Rs. '000
Sales visits to customers			1,000
Processing orders			1,400
Normal deliveries			2,400
Urgent deliveries			1,200

(a)

Activity (Cost driver)	Cost	Cost drivers	Cost per cost driver
	Rs. '000		Rs.
Sales visits to customers (Sales visits)	1,000	200	5,000
Processing orders (Orders processed)	1,400	700	2,000
Normal deliveries to customers (Normal deliveries)	2,400	240	10,000
Urgent deliveries to customers (Urgent deliveries)	1.200	30	40.000

Customer Profitability	AH	LW
	Rs. '000	Rs. '000
Contribution	1,500	810
Customer costs:		
Sales visits	120	60
Processing orders	150	40
Normal deliveries	450	150
Urgent deliveries	<u>200</u>	
	<u>920</u>	<u>250</u>
Customer Profit	<u>580</u>	<u>560</u>

(b) Improving Profitability

Persuade customers to increase order quantities (even by offering discounts after a cost benefit analysis) and thereby reduce the number of orders which will reduce the order processing cost.

Curtail sales visits by improving efficiency of delivery scheduling, attempting to merge deliveries to same customers and combining deliveries to different customers, which will reduce costs of sales visits and delivery costs.

Charge additional delivery cost to the customers on urgent deliveries: either cost will be recovered or urgent deliveries will reduce due to the disincentive.

Relevant Learning Outcome/s: 1.3.2, 1.3.3

1.3.2 Demonstrate the importance of the following concepts for cost accounting and decision making:

- Kaizen costing
- Quality- related costing (TQM)
- Manufacturing/ Enterprise resource planning (MRP and ERP)
- 1.3.3 Assess environmental accounting (including its importance, types of costs and techniques available).

(a) Costs of quality conformance are the costs incurred by an organisation in attempting to ensure that its quality standards are complied with before the product or service is completed. In other words, it refers to the total cost of achieving specified quality standards.

In contrast, costs of quality non-conformance are costs that occur as a result of quality failures. This could be broadly twofold:

- (i) internal failure costs which arise because the failure requires the product / service to be re-worked.
- (ii) external failure costs which arise because of the damage the failure causes to the business as a result of supplying a poor quality item to a customer.
- (b) SHL is operating in a market where consumers consider price and quality as the main factors when making the buying decision. This is not unusual but highlights the need for SHL to understand the profile of its customers. i.e. to what extent they are prepared to pay for high quality. SHL should understand that there is a trade-off between price and quality.

The more that SHL spends on developing a quality product, the greater will be its costs and hence its product selling price will need to reflect this additional cost in order for SHL to be profitable.

SHL will need to decide whether to follow a low price, low quality strategy or a high price, high quality strategy, or to follow a strategy that lies somewhere between these two extremes.

(c) Kaizen principles encourage gradual and continuous improvement by making small changes in the product or the method of operations.

SHL operates in a market where products have comparatively a short life cycle. If this life cycle could be extended then this would result in greater profitability for SHL.

Kaizen principles could achieve this by gradually improving product quality without any increase in price for example by making small changes to the components being used in its products.

Relevant Learning Outcome/s: 3.8.1, 3.8.2

3.8.1 Define the term uncertainty and risk.

3.8.2 Demonstrate how a decision would be made under conditions of uncertainty, using:

- Decision tree- based expected value calculations

- Data tables

- Alternative decision criterions (minimax, maximax and minimax regret)

(a)	-		~
141	1	2	۱.
	L	a	

I)				Rs.
		Probability	Small Truck (200 boxes)	Large Truck (300 boxes)
	Demand - 180 boxes	40%	W1 = 10,500	W2 = (2,500)
	Demand - 270 boxes	60%	W3 = 11,000	W4 = 15,500

W1 - (200*180) - 20,000 - 5,500 = 10,500 W2 - (200*180) - 30,000 - 8,500 = (2,500) W3 - (200*200) - 20,000 - 5,500 - (70*50) = 11,000 W4 - (200*270) - 30,000 - 8,500 = 15,500

(b)

(i) <u>Expected Value criterion</u>

		Small Truck (200 boxes)	Large Truck (300 boxes)
Demand - 180 boxes	40%	10,500*0.4	(2,500)*0.4
Demand - 270 boxes	60%	11,000*0.6	15,500*0.6
Expected Value		10,800.00	8,300.00

Expected value criterion is possible when probabilities are given and produces most likely outcome with a lesser quantum of risk. Accordingly, best option is buying a small truck.

(ii)	Maximax decision criterion		
	If the management is optimistic (risk takin maximax decision rule which selects the ma	ng attitude) then aximum of highe	the management would choose st return;
		ST	LT
	Highest return (Rs)	11000	15500
	Large truck should be bought since it gives	the highest retur	'n.
(iii)	Maximin decision criterion If the management is pessimistic (risk a choose maximum of minimum return. Sele	avoiding attitud ction of best wor	e) then the management would st-case scenario.
		ST	LT
	Lowest return (Rs)	10500	(2,500)
	Small truck should be bought since it gives	the highest retu	rn from the lowest return.

Relev	ant Le	earning Outcome/s: 4.2.1		
4.2.	1 Dise (inc neg	cuss different types of transfer p cluding maximum and minimum p otiated pricing).	pricing possible price, cost based	e under decentralized organizational structure pricing, market based pricing, dual pricing and
(a)	Са	lculation of revised price per unit		
			Rs.	
	Var	riable cost (120/1.2)	100.00	
	Fix	ed cost ((300/60)*2)200%	20.00	
	Ful	l cost	120.00	
	Pro	ofit margin (10%)	12.00	
	Pro	oposed Transfer Price	132.00	per unit
(b)	(i)	Maximum transfer price - The l the goods or services externally.	owest market p Therefore the r	orice at which Division B could purchase naximum price should be LKR 125.
	(11)	The minimum transfer price s cost plus opportunity cost of t LKR 100. Division B could se 125. Therefore The opportu Division B if transferred at Rs. less Rs. 100 = Rs 21)	should be the s the item transfe ll any quantity nity cost = Th 100 (Rs. 125 le	um of the supplying division's marginal erred. The marginal cost of a LED bulb is of bulbs to the external market at LKR he maximum contribution foregone by ess selling & distribution cost (Rs. 4) and
		Therefore the minimum trans	fer price stands	at Rs.121 per bulb.
	(i	ii) Any price between Rs. 121 a	nd Rs. 125 is ac	ceptable to both divisions.
		Accordingly FPI's current t	ransfer nricing	policy of Rs 120 and the proposed policy

Accordingly, EPL's current transfer pricing policy of Rs. 120 and the proposed policy of Rs. 132 are not the best transfer prices.

(c) Dual rate transfer pricing sets two different prices for the transferring division and receiving division. Usually transferring division invoices at a higher price whereas the receiving division records these purchases at lower rate ideally marginal cost of the transferring division. This method motivate both divisions and enable them to achieve their profit targets. However, The company profit will be overstated due to duplication of profit and hence, a separate accounting entry should be passed to neutralise this overstatement of profit.

5.1.6 / i	Assess receivable manage including whether to fact Annual demand = Annual production capa Therefore, the capacity i Current system - constan	ement decision: for or not. 100,000 + 11 city = s just sufficient	s such as cash 0,000 + 190,00 135,000 x 4 = to meet the do	discounts, age 00 + 140,000 = emand and no	analysis, chan	nge in credit policy 540,000 540,000
(a)	Annual demand = Annual production capa Therefore, the capacity i Current system - constan	100,000 + 11 city = s just sufficient at production	0,000 + 190,00 135,000 x 4 = : to meet the de	00 + 140,000 = emand and no	overtime is re	540,000 540,000
(a)	Annual demand = Annual production capa Therefore, the capacity i Current system - constan	100,000 + 11 city = s just sufficient at production	0,000 + 190,00 135,000 x 4 = to meet the de	00 + 140,000 = emand and no	overtime is re	540,000 540,000 quired.
	Annual production capa Therefore, the capacity i Current system - constan	city = s just sufficient at production	135,000 x 4 =	emand and no	overtime is re	540,000 quired.
	Therefore, the capacity i Current system - constan	s just sufficient	to meet the de	emand and no	overtime is re	quired.
	Current system - constan	nt production				
	0	r				
	Quarter	1	2	3	4	Total
	Opening inventory	-	35,000	60,000	5,000	
	Production	135,000	135,000	135,000	135,000	
	Sales	100,000	110,000	190,000	140,000	
	Closing inventory	35,000	60,000	5,000	-	
	Average inventory	17,500	47,500	32,500	2,500	
	Storage cost (Rs)	70,000	190,000	130,000	10,000	400,000
(b)	JIT production system					
	Quarter	1	2	3	4	
	Sales	100,000	110,000	190,000	140,000	
	Normal production	100,000	110,000	135,000	135,000	
	OT production	-	-	54,000	5,000	
	Lost sales	-	-	1,000	-	
					Rs	
	Incremental cost of OT v	vorking per uni	it			
	Labour: 20 ⁰	% x 35			7	
	Overhead:	10% x 10			1	
					8	

Q3 additional cost on OT production (54,000*8)	432,000	
Q4 additional cost on OT production (5,000*8)	40,000	
Q3 loss of contribution (1,000*15)	15,000	
Total incremental cost due to JIT	487,000	
Storage cost that can be saved	400,000	
Net adverse impact on profit	(87,000)	
Changing to IIT will result in profits reducing by Rs 87.00	() for the year	

Changing to JIT will result in profits reducing by Rs. 87,000 for the year. Therefore, change to JIT is not recommended.

Relevant Learning Outcome/s: 2.2.1, 2.2.2, 2.2.3, 2.2.5

2.2.1 Discuss different purposes of budgeting and possible conflicts arising due to such multiple purposes.

2.2.2 Assess the behavioural implications of different budgeting approaches (imposed style, participatory style, negotiated style, incremental style, zero based, ABB).

- 2.2.3 Analyse the budgetary control statement (original budget, flex budget, actual and variances).
- 2.2.5 Discuss "beyond budgeting" as a potential solution for criticism levelled at traditional budgetary planning and control.

1	- ۱	
- (3	a	

		In Rs. '000s
Budgeted profit		4,660
Sales volume contribution variance	(9,000 units - 10,000 units) x 636	(636) ADV
Selling price variance	9,000 units x (1,840 - 1,800)	360 FAV
Cost variances:		
Direct material price variance	74,000 kg x (108 – 112)	(296) ADV
Direct material usage variance	(9,000 x 8 kg) – 74,000 kg) x 108	(216) ADV
Direct labour rate variance	10,800 x (180 - 190)	(108) ADV
Direct labour efficiency variance	((9,000 x 1.25) – 10,800) x 180	81 FAV
Variable overhead expenditure variance	(10,800 hours x 60) - 700,000	(52) ADV
Variable overhead efficiency variance	((9,000 x 1.25) – 10,800) x 60	27 FAV
Fixed overhead expenditure variance	1,700,000 - 1,680,000	20 FAV
Actual profit		3,840

Workings

Budgeted Profit for the Period (10,000 units)			<u>Rs. '000</u>	
Sales	@	1,800	18,000	
Direct Materials	@	864	(8,640)	
Direct Labour	@	225	(2,250)	
Variable Production Overheads	@	75	(750)	
Contribution	@	636	6,360	
Fixed Production Overheads			1,700	
Budgeted Profit			4,660	
Actual Profit for the Period (9,000 units)			Rs. '000	
Sales	9,000 units :	x 1,840	16,560	
Direct Materials	74,000kg x 1	112	(8,288)	
Direct Labour	10,800 hour	rs x 190	(2,052)	
Variable Production Overheads			(700)	
Contribution			5,520	
Fixed Production Overheads			(1,680)	
Actual Profit			3,840	

(b) In a standard marginal costing variance statement the sales volume contribution variance is calculated using the standard contribution per unit. In a standard absorption costing variance statement, standard contribution is replaced by the standard profit per unit, which includes a fixed overhead absorption rate.

The difference in the variance is represented in the absorption costing variance statement by the fixed production overhead volume variance, which is calculated as the difference in actual and budgeted volume x the fixed overhead absorption rate.

The fixed production overhead volume variance represents a part of the under absorbed fixed overhead as a result of producing a lower volume than budgeted.

- (c) Sales volume profit
 - variance

(9,000 units - 10,000 units) x 466 = 466,000 Adv

It would also be necessary to include a fixed production overhead volume variance as follows: Fixed production overhead volume variance (9,000 units – 10,000 units) x 170 = 170,000 Adv

- (d) The arguments in favour of using absorption costing for profit reporting and inventory valuation:
 - (i) Fixed production overheads can be a large proportion of total production costs. It is therefore important that these costs are included in the measurement of product costs, as they have to be recovered to make a profit.
 - (ii) Absorption costing follows the matching concept by carrying forward a proportion of the fixed production overhead costs in the inventory valuation to be matched against the sales revenue generated when the items are sold.
 - (iii) It is necessary to include fixed production overheads in inventory valuations for financial statements.
 - (iv) It has been argued that in the longer term, all costs are variable and it is appropriate to try to identify overhead costs with the products or services that cause them.

Relevant Learning Outcome/s: 3.7.1, 3.7.2, 3.7.3
3.7.1 Explain the process of long- term decision-making (proposal generating, initial screening, analysis
and acceptance, and monitor and review).
3.7.2 Compute non- discounted cash flow methods (payback/accounting rate of return and discounted
cash flow methods (net present value/ internal rate of return/profitability index/ discounted
payback) with:

- Inflation

- Tax

- Uncertainty (use of probabilities and sensitivity analysis is expected)

3.7.3 Evaluate projects considering results derived from non-discounted cash flow and DCF valuation methods and other related factors.

(a) <u>Cash Flows</u>	Y00 (Rs. 000)	Y01 (Rs. 000)	Y02 (Rs. 000)	¥03 (Rs. 000)	Y04 (Rs. 000)
Booth and commissioning					
(10mn+2mn)	(12,000)	-	-	-	-
Sale of scraps	-	-	-	-	3,000
Booth maintenance	-	(2,000)	(2,000)	(2,200)	(2,420)
Concrete work done (Sunk cost)	-	-	-	-	-
Revenue (W2) from existing facilities	-	2,000	2,400	3,000	3,400
Contribution on additional revenue (W3)	-	4,000	4,400	4,840	4,840
Saving on labour cost	-	500	500	500	500
Increase in electricity cost		<u>(200)</u>	(200)	(200)	<u>(200)</u>
Net Cash Flows	(12,000)	4,300	5,100	5,940	9,120
Tax @ 28%	<u> </u>	<u>(1204)</u>	<u>(1428)</u>	<u>(1663)</u>	(2,554)
Net Cash flows after tax before cash inflow due to Cap. all	<u>(12,000)</u>	<u>3,096</u>	<u>3,672</u>	<u>4,277</u>	<u> </u>
DR at 12%	<u> </u>	<u>0.893</u>	<u>0.797</u>	<u>0.712</u>	0.636
DCF (before Cap. all)	<u>(12,000)</u>	<u>2,764</u>	<u>2,927</u>	<u>3,045</u>	<u>4,176</u>
Cash inflow due to Cap. all (W-4)	-	<u>1,120</u>	<u>1,120</u>	<u>1,120</u>	<u>-</u>
DR cash inflow due to cap.all@17.6%	1	<u>0.850</u>	<u>0.723</u>	<u>0.615</u>	<u>0.523</u>
DCF cash inflow due to Cap. all @ 17.6%		<u>952</u>	<u>810</u>	<u>688</u>	<u>-</u>
Net DCF	<u>(12,000)</u>	<u>3,716</u>	<u>3,737</u>	<u>3,733</u>	<u>4,176</u>
NPV	<u>3,362</u>				

Since this investment generates a positive NPV, the investment is financially desirable to ASL

WI - Since all cash flows are subject to inflation at a uniform rate of 5% we can apply the real discounting rate. Real discounting rate = ((1 + nominal DR)/(1 + inflation)) - 1= (1.176/1.05) - 1

= 12%

W2 - Increase in forecasted revenue over existing revenue

	Y01 (Rs. 000)	Y02 (Rs. 000)	Y03 (Rs. 000)	Y04 (Rs. 000)
Forecasted revenue	10,000	12,000	15,000	17,000
Increase in contrib. (20%)	2,000	2,400	3,000	3,400

W3 -	Contribution from additional revenue Additional revenue Contribution (80%)	5,000 4,000	5,500 4,400	6,050 4,840	6,050 4,840
W4 -	Capital allowance Cash inflow due to Cap.all(@28%	4,000 1,120	4,000 1,120	4,000 1,120	-

Note: Cash inflows due to capital allowances are discounted at the nominal DR as they are not affected by inflation.

	<u>NCF</u> (12,000)	<u>Cumui.</u> (12.000)
W 04	(12,000)	
Y-01	4,216	(7,784)
Y-02	4,792	(2,992)
Y-03	5,397	2,405
Payback period =	2years +(2992/5397)*12 = 2 years &	7 months (approx.)

(ii) Payback period is useful due to the following;

- It can be easily applied and understood.
- If the company is facing liquidity issue payback period, helps to identify the period within which it can recover the initial capital investment.
- When the continuation of the investment for the expected period is uncertain due to technology changes/product changes etc. this method is useful.
- More useful when small investments are being evaluated.

(c)	¥00 (Rs. 000)	Y01 (Rs. 000)	Y02 (Rs. 000)	¥03 (Rs. 000)	¥04 (Rs. 000)
When DR = 20%,(Real)	(¹ ¹ ¹ ¹	(,	()	()	()
NCF (before Cap. all)	(12,000)	3,096	3,672	4,277	6,566
DR	1.000	0.833	0.694	0.579	0.482
PV	(12,000)	2,579	2,548	2,476	3,165
Cash flow due to Cap. all	-	1,120	1,120	1,120	
DR @ 26% nominal	-	0.794	0.630	0.500	
DCF due to Cap. all	-	889	706	560	
Net DCF	(12,000)	3,468	3,254	3,036	3,165
NPV = 923					
NPV @ 12% (real)	3,362				
NPV @ 20% (real) IRR	923 20% + 8%	<u>923</u> 439			
IRR	23% (real)				
	= 29.15% (nom	inal)			

If the discounted rate (company's cost of capital) increases above 29.15% this project is not financially desirable. In other words, if the financing cost for this project exceeds 29.15% the project will not be financially worthwhile.

1

(d)			
(i)	The highest price is the price at which the NPV of the investment become zero.		
		Rs.000	
	The NPV as calculated above	3,362	
	Cost of the repair booth	10,000	
	Total PV other than cost of repair booth (at Y01)	13,362	
	When delayed by another one year (DR at $Y01 = 0.893$)	11,932	
	Price of the repair booth now (DR at Y00 = 1)	(10,000)	
	The new NPV	1,932	
	If money is advanced the NPV will come down by	1,430	

		Rs.000
(ii)	Here, the NPV should be at least	1,932
	NPV in one year ahead	2,164
	NPV when price of the booth equals to 10mn	3,362
	Possible decrease in NPV due to increase in price	(1,198)
	If X is the price revision, the effect on NPV should be;	
	(-X*1) + (X/3*28%*2.188) + (X*30%*72%*0.636) =	(0.65841X)
	X=increase in price = 1,198/0.65841 (Rs.)	1819.533
	Increased/Revised price should be (Rs. '000)	11,820

Notice of Disclaimer

The answers given are entirely by the Institute of Chartered Accountants of Sri Lanka (CA Sri Lanka) and you accept the answers on an "as is" basis.

They are not intended as "Model answers', but rather as suggested solutions.

The answers have two fundamental purposes, namely:

- 1. to provide a detailed example of a suggested solution to an examination question; and
- 2. to assist students with their research into the subject and to further their understanding and appreciation of the subject.

The Institute of Chartered Accountants of Sri Lanka (CA Sri Lanka) makes no warranties with respect to the suggested solutions and as such there should be no reason for you to bring any grievance against the Institute of Chartered Accountants of Sri Lanka (CA Sri Lanka). However, if you do bring any action, claim, suit, threat or demand against the Institute of Chartered Accountants of Sri Lanka (CA Sri Lanka (CA Sri Lanka), and you do not substantially prevail, you shall pay the Institute of Chartered Accountants of Sri Lanka's (CA Sri Lanka's) entire legal fees and costs attached to such action. In the same token, if the Institute of Chartered Accountants of Sri Lanka) is forced to take legal action to enforce this right or any of its rights described herein or under the laws of Sri Lanka, you will pay the Institute of Chartered Accountants of Sri Lanka, using the Institute of Chartered Accountants of Sri Lanka, the Institute of Chartered Accountants of Sri Lanka (CA Sri Lanka) is forced to take legal action to enforce this right or any of its rights described herein or under the laws of Sri Lanka, you will pay the Institute of Chartered Accountants of Sri Lanka, legal fees and costs.

© 2013 by the Institute of Chartered Accountants of Sri Lanka (CA Sri Lanka). All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission of the Institute of Chartered Accountants of Sri Lanka (CA Sri Lanka).

Suggested Solutions (KC2), June 2015